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Abstract

An efficient noise dithering procedure is demonstrated for measuring weak doublet,
spectra with a Fourier transform interferometer where the weak interferograms are
sampled by a 1-bit analog-to-digital converter. In the absence of noise, no information
is obtained regarding the doublet spectrum because the modulation (AC) term s(z)
of the interferogram is undetectable which happens when |s(z)| is less than the instru-
mental detection limit B for all path difference = values. Extensive numerical exper-
iments are carried out to test the recovery of the following interferogram which rep-
resents the doublet spectrum: s(z) = (s,/2) exp(—m2z?/8)[cos(27 fiz) + cos(27 foz)),
for different s,, linewidth factor § and <f> = (f; + f2)/2. Even for short observa-
tion times (sampling periods) of s(z), the resonant frequencies can be located at high
accuracy over a wide range of <f> and f values. Signal-to-noise ratios greater than

50 are also obtained for the power spectra.

Rapid and accurate recovery of the lost high-frequency components in the un-
dersampled representation of a bandlimited signal s(z) is demonstrated using the
simplex projection method (SPM). The spectral extrapolation technique is effective
if: 1) Fourier spectrum S(f) of s(z) contains features that are exhibited regularly
within the signal bandwidth, and 2) Fourier transform {S(m)} of the undersampled
representation of s(z) contains sufficient information about the said regularities. The
SPM is utilized to determine the various features contained in {S(m)} and to estab-
lish their possible pattern of appearance. The performance of the recovery procedure
is tested as a function of the sampling rate. Two test signals with distinctly different
Fourier spectrum profiles are considered: 1) Interferogram of a spectral doublet, and
2) Four-point object. In both cases, the bandwidth of s(z) is known a priori and
used to determine the number of unknowns to be solved. For an undersampled inter-
ferogram that contains only 54% of the energy of the spectral doublet, 42 unknown
components have been calculated to decrease the normalized mean-square error of
the interpolated signal by 75% relative to the undersampled data. The extrapolation
technique is shown to be robust to the presence of additive noise in S(f). The SPM

is also demonstrated on the Raman spectrum of CCly.
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